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ABSTRACT Free-living nitrogen fixation (FLNF) in the rhizosphere, or N fixation by
heterotrophic bacteria living on/near root surfaces, is ubiquitous and a significant
source of N in some terrestrial systems. FLNF is also of interest in crop production as
an alternative to chemical fertilizer, potentially reducing production costs and ame-
liorating negative environmental impacts of fertilizer N additions. Despite this inter-
est, a mechanistic understanding of controls (e.g., carbon, oxygen, nitrogen, and nu-
trient availability) on FLNF in the rhizosphere is lacking but necessary. FLNF is
distinct from and occurs under more diverse and dynamic conditions than symbiotic
N fixation; therefore, predicting FLNF rates and understanding controls on FLNF has
proven difficult. This has led to large gaps in our understanding of FLNF, and studies
aimed at identifying controls on FLNF are needed. Here, we provide a mechanistic
overview of FLNF, including how various controls may influence FLNF in the rhizo-
sphere in comparison with symbiotic N fixation occurring in plant nodules where
environmental conditions are moderated by the plant. We apply this knowledge to a
real-world example, the bioenergy crop switchgrass (Panicum virgatum), to provide
context of how FLNF may function in a managed system. We also highlight future
challenges to assessing FLNF and understanding how FLNF functions in the environ-
ment and significantly contributes to plant N availability and productivity.

KEYWORDS free-living nitrogen fixation, diazotrophs, environmental controls,
rhizosphere, rhizosphere-inhabiting microbes

iological nitrogen fixation (BNF), the process by which gaseous N, is converted into
ammonia (NH;) via the enzyme nitrogenase, is crucial for the availability of nitrogen
(N) in terrestrial ecosystems (1). BNF includes symbiotic (i.e., nodule formation) and
free-living N fixation (FLNF), defined as N fixation occurring without a formal plant-
microbe symbiosis. In 2011, Reed et al. reviewed FLNF, covering topics from carbon (C),
N, and oxygen controls on FLNF to ecosystem scale responses of FLNF (2). In this review,
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FIG 1 Contrasting habitats of free-living and symbiotic nitrogen fixation. (a) FLNF is carried out by a diverse array of N fixers
living in a community, while symbiotic N fixation is performed only by a few bacteria (e.g., rhizobia and Frankia) living in a
population. (b) FLNF is supported by dissolved organic carbon (DOC) in the soil, a variable and complex C source, while symbiotic
N fixers receive a constant supply of simple C compounds (i.e., succinate) directly from the host plant. (c) Oxygen concentration
in the rhizosphere is highly variable and driven by soil structure and texture and respiration by microbes and roots. Conversely,
symbiotic N fixers are supplied oxygen at low concentrations by their host plant. (d) Nutrients necessary to support FLNF (e.g.,
P, Fe, Mo, and V) must be acquired by the diazotroph. However, these nutrients are delivered to symbiotic N fixers by the host
plant. (e) Diazotrophs in the rhizosphere can access N from soil and FLNF, while all symbiotically fixed N is delivered to the plant.

fixation, making it difficult to draw conclusions about FLNF based on research of
symbiotic N fixation (Fig. 2). The lack of research focused on FLNF is surprising
considering that the process is ubiquitous in terrestrial systems and can provide
significant inputs of N equal to or greater than symbiotic N fixation (2, 6, 7). For
example, Cleveland et al. estimate via a modeling approach that FLNF, including in the
rhizosphere, bulk soil, on leaf litter and decaying wood, and on plant and leaf surfaces,
contributes 6 kg N ha—' year—" on average to tropical forest systems (ranging from 2.4
to 14 kg N ha=" year™"), while symbiotic BNF was estimated at only 4.5 kg N ha™’
year—' (6). Similarly, Reed et al. show that FLNF rates fall within the range of symbiotic
BNF rates for all biomes (2). Summing the FLNF rates for each biome (accounting for
land area of each biome), as estimated by Reed et al., FLNF contributes ~76 Tg N
year—' globally (falling within Vitousek et al. estimated range of 40 to 100 Tg N fixed
year—') (7), which far exceeds inputs from lightning (5 Tg N year—") (8) and is more than
half the N fixed industrially via Haber-Bosch reactions (120 Tg N year—") (2, 8). Of this
N contributed by FLNF, the majority is likely to be fixed in the rhizosphere because of
C accessibility (discussed below), making understanding rhizosphere FLNF key to
understanding this important N input.

FLNF in the rhizosphere has been of particular interest in low-input crop production
because this source of N could reduce reliance on chemical fertilizers. This is especially
important in biologically based agriculture (organic agriculture) and in low-input
agricultural systems in developing countries. In these cases, a greater reliance on FLNF
could ameliorate some of the negative environmental impacts associated with chem-
ical N additions (i.e., nitrate leaching and greenhouse gas N,O efflux). One area in which
FLNF has been documented and could provide these benefits is in perennial bioenergy

March 2019 Volume 85 Issue 6 €02546-18 aem.asm.org 2

1sanb Aq 6T0Z ‘9 1snbny uo /610 wse’wae//.dny woly papeojumod


https://aem.asm.org
http://aem.asm.org/

Minireview

’_\ Carbon (energy) availability
Diversity of carbon sources and
i compounds
‘/////—‘ Oxygen concentration
Potential for nifH{ downregulation by
i nitrogen
M Phosphorus supply & accessibility
M Micronutrient supply & accessibility

Symbiotic
L

Free-living

FIG 2 Environmental factors known to impact FLNF presented with triangles representing a theoretical
range for each factor, low (narrow, dark-colored) to high (broad, light-colored). In contrast, symbiotic N
fixation, represented by vertical hatched bar, only occurs in a narrow range of each of the environmental
conditions. For example, FLNF can occur over a wide range of oxygen concentrations from low to high,
while symbiotic N fixation occurs only at low oxygen concentrations.

cropping systems, such as miscanthus (Miscanthus giganteus) (9) and switchgrass
(Panicum virgatum) (10). For example, Davis et al. showed that FLNF, associated with
miscanthus, rhizomes, and isolated root-associated bacteria, could supply the N which
had been missing from the miscanthus N budget (9). Ruan et al. demonstrated a lack
of response in switchgrass crop yields with increasing N addition rates, suggesting that
switchgrass can obtain at least some N from FLNF, supporting crop yields at low N that
match those at high N fertilizer addition (10). Switchgrass is known to support the
growth of free-living N fixers (11-13). In our own work, we have observed the di-
azotroph Azotobacter vinelandii successfully colonizing switchgrass roots (Fig. 3). FLNF
has also been directly observed in association with switchgrass in our own work (Fig.
4) and by others (14, 15).

Despite interest in FLNF and its demonstrated potential to support food and
bioenergy crop production, we still know surprisingly little about the environmental
controls on FLNF and how they differ from symbiotic N fixation. We know rhizosphere
diazotrophs face different challenges compared with the symbiotic N fixers, who are
provided with a relatively stable environment as pH, energy, nutrients, and oxygen are
all optimized for them by their plant host (Fig. 1). As diazotrophs face the challenges
associated with a fluctuating climate (soil moisture and temperature) and acquiring

FIG 3 Scanning electron micrograph (X20,000) showing the free-living nitrogen-fixer Azotobacter
vinelandii living on a switchgrass root. Cave-in-rock variety switchgrass seedlings were grown in sterile
jars and inoculated with A. vinelandii (ATCC BAA-1303).
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FIG 4 Preliminary N-fixation rates from switchgrass rhizosphere soils receiving high N additions
(High N; +125 kg Urea-N ha—' year—') and low N additions (Low N; +25kg Urea-N ha=—" year—").
Sterile switchgrass (var. Cave-in-Rock) seeds were planted into a sterile sand and vermiculite mixture
(50:50 vol/vol) containing a core of field soil as root inoculum. Field soils were collected from
marginal land sites managed by the Great Lakes Bioenergy Research Center (GLBRC) in southern
Michigan. Plants received one addition of N at planting and a one-half Hoagland’s nutrient solution
(N free). Plants were grown in the greenhouse for 4 months prior to harvest. N-fixation rates were
measured on 2-g root/rhizosphere samples via >N, enrichment method (35). Samples (n = 6 per
treatment) were placed in 10-ml gas vials and adjusted to 60% water holding capacity using a 4 mg
C ml=" glucose solution. Vials were sealed, evacuated, and adjusted back to atmospheric pressure
by adding 1 ml of >N, gas, 10% equivalent volume of oxygen, and balanced with helium. Vials
incubated for 7 days and were then dried and ground for "°N analysis. Final values were calculated
following Warembourg (80). N additions did not significantly impact N-fixation rates (P = 0.1585).

resources for growth outside a symbiotic relationship, their responses to a highly
variable environment must also be more flexible and evolutionarily more diverse. In this
review, we will discuss what is known about diazotrophs, potential controls on the
activity of diazotrophs and rates of FLNF in the rhizosphere, and highlight gaps in our
knowledge that limit our ability to optimize rhizosphere conditions in order to promote
FLNF in managed systems. Finally, as an example of a managed system where FLNF
could be critically important for productivity, yields, and sustainability, we will apply
what is known about FLNF to predict the impacts of FLNF in switchgrass bioenergy
cropping systems.

The diversity of free-living N fixers. The ability to synthesize nitrogenase and fix
N is exclusively prokaryotic (16). While N-fixing organisms are predominantly bacteria,
some methanogenic archaea have been observed to fix N (17). N-fixing organisms are
found across a wide range of bacterial phyla, including, Alphaproteobacteria, Betapro-
teobacteria, Deltaproteobacteria, and Gammaproteobacteria, Firmicutes, Cyanobacteria,
and green sulfur bacteria (17). Furthermore, soils are home to high diazotroph diversity,
containing over 50% more operational taxonomic units (OTUs) than marine systems
(17). This diversity can be observed even within rhizosphere communities. For example,
diazotrophs isolated from the switchgrass rhizosphere represented at least 52 different
bacterial phylotypes across multiple phyla, including Firmicutes, Alphaproteobacteria,
Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria (13). Overall, the
diversity of diazotrophs actively fixing N in the rhizosphere at any given time is likely
to be high.

Despite the high diversity of diazotrophs, nitrogenase, the enzyme involved in BNF,
has only three known forms. Nitrogenase consists of two metalloproteins, an iron (Fe)
protein responsible for ATP synthesis, and, most commonly, a molybdenum-iron (Mo-
Fe) protein responsible for substrate (i.e.,, N,) and proton reduction (18). Molybdenum
nitrogenase (Mo-nitrogenase) is the most ubiquitous isozyme synthesized by organisms
from bacterial phyla Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gam-
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maproteobacteria, Firmicutes, and Cyanobacteria. Many diazotrophs from Alphaproteo-
bacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes can also synthesize
alternative forms of nitrogenase that substitute the Mo-Fe cofactor with vanadium-iron
(V-nitrogenase) and/or iron-iron (Fe-nitrogenase) cofactors under Mo-limited condi-
tions (18, 19). These slight variations in enzyme structure may influence FLNF and its
responses to environmental conditions.

It has been shown that the different forms of nitrogenase vary in substrate
affinity, efficiency, and temperature sensitivity, all of which influence FLNF rates. For
example, Bellenger et al. demonstrate that alternative forms of nitrogenase exhibit
lower R ratios (the ratio between FLNF rates measured by acetylene reduction, an
indirect measure of N fixation, and rates measured via fixation of '>N,) than
Mo-nitrogenase (20). Azotobacter vinelandii R ratios for Mo-nitrogenase were found
to 3.5 = 1.1, while R ratios for V-nitrogenase and Fe-nitrogenase were 1.2 = 0.4 and
0.5 = 0.3, respectively (20). This indicates that alternative nitrogenase enzymes
have a lower affinity for acetylene gas than the Mo-nitrogenase. V-nitrogenase also
expresses higher isotopic discrimination against >N, with a fractionation factor of
—4%o versus —1%o for Mo-nitrogenase (21). Electron allocation varies among the
different forms of nitrogenase as well (22). Mo-nitrogenase allocates the majority
(~75%) of its electrons to N, reduction, while Fe-nitrogenase allocates the majority
of its electrons to proton reduction (22). V-nitrogenase electron allocation ap-
proaches a 50:50 exchange between N, reduction and proton reduction (22). These
results seem to suggest that the Mo-nitrogenase is the most efficient nitrogenase
at converting N, to NH;; however, other work has shown that temperature influ-
ences the relative efficiencies of these isozymes, complicating this issue. V-nitrogenase has
been shown to be more effective than Mo-nitrogenase at low temperatures (~5°C), as
illustrated by a 40-fold versus 400-fold decrease in activity, respectively, as temperature
decreased from 30°C to 5°C (23). At higher temperatures (e.g., 30°C), Mo-nitrogenase is
more efficient, most likely due to its higher affinity for N, than V-nitrogenase, as
indicated by differences in K, for the reduction of N, to NH; (19 and 29 kPa for
Mo-nitrogenase and V-nitrogenase, respectively) (24). These functional differences
illustrate the potential for different forms of nitrogenase to respond differentially to
various environmental conditions, such as metal availability (see below) and tempera-
ture, and highlight the need for further research into how replacement of Mo with V or
Fe influences nitrogenase function.

Carbon controls on free-living N fixation. It is well known that N fixation is an
energetically and, therefore, carbon (C) expensive process. This was shown in early
studies of FLNF, where the free-living N fixer Clostridium pasteurianum was incapable of
fixing N unless supplied with adequate availability of C substrate (i.e., sucrose or
pyruvate) (25). This substrate requirement is driven by the high demand for ATP by
nitrogenase (26); 16 ATP and 8 electrons are required for the conversion of 1 N,
molecule to 2 NH; molecules (27). Such high energy demands limit FLNF such that
diazotrophs can only fix N when adequate supplies of C are available. In fact, FLNF was
previously overlooked as a significant source of N because it was thought that soil
organic matter could not provide enough energy, in the form of accessible C, to
support N fixation (28). However, plant root exudates, C-rich secretions consisting of
low-molecular-weight compounds such as sugars, organic acids, and mucilage (i.e.,
polysaccharides) (29), are a potential source of C capable of meeting diazotroph energy
demands. Root exudation makes the rhizosphere a hot spot for microbial activity (30)
and a key area for FLNF in the soil.

Plants allocate a significant portion of their fixed C belowground; on average, ~40%
of a plant’s photosynthate is translocated into belowground biomass (31). Of this
translocated C, ~12% is typically recovered in the soils as root exudates, root exudate-
derived metabolites, and microbial biomass C (31). For some prairie grasses, the portion
of fixed C recovered from soils can be as much as 15% (32). Switchgrass is known to
allocate a significant portion of its fixed C belowground. Switchgrass C allocation to
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TABLE 1 Root exudate chemistry of switchgrass®

Concentration = SD

Compound group Identified compound(s) (M)

Alcohol Methanol 2.654 *+ 0.629

Amino acid/sugar Alanine, glycine, lysine, valine, betaine, 6.144 + 11.126
methylamine, trimethylamine

Carbohydrate Arabinose, fructose, glucose 77.589 *+ 51.494

Ketone Acetone 12.083 * 7.789

Nucleic acid Thymine, thymidine, uracil 1.939 = 3.657

Organic acid Acetate, acetoacetate, allantoin, benzoate, 13.169 * 22.014
formate, gallate, lactate, succinate, tartrate

Quinone Quinone 2947 * 3.291

atxudate samples were collected from switchgrass seedlings grown hydroponically under sterile conditions.
Plant growth medium was snap-frozen on liquid nitrogen, freeze-dried, and sent to the Pacific Northwest
National Lab Environmental Molecular Sciences Laboratory for analysis. Exudate chemistry was determined
by collection of 1D nuclear magnetic resonance (NMR) spectra for each sample following standard
Chenomx (Edmonton, Alberta, Canada) sample preparation and data collection guidelines (81). Samples
were analyzed on a Varian Direct Drive (VNMRS) spectrometer (Agilent Technologies, Santa Clara, CA)
equipped with a Varian triple resonance salt-tolerant cold probe with a cold carbon preamplifier and a Dell
Precision T3500 Linux workstation running VNMRJ 3.2.

roots and soil was measured at 40% and 6%, respectively, 1 day after a '3C-CO,
pulse-chase labeling (33). Of the 6% fixed C recovered from soils, 92% was found in
microbial biomass (33), indicating that C recently fixed by switchgrass was quickly
assimilated into the rhizosphere microbial community. This highlights the potential for
switchgrass to support FLNF in its rhizosphere. Furthermore, as discussed in a recent
review by Bowsher et al., both quality and quantity of root exudation responds to N
availability, highlighting the interplay between plant C inputs and soil N availability
(34). While we are unaware of any studies which have directly explored the response of
FLNF to additions of root exudates, it is well established that C additions typically
stimulate N fixation, with additions of C being an integral part of the methods used to
measure rates of rhizosphere FLNF (35). There is great need for studies that elucidate
the linkages and feedbacks between N availability, plant C exudation rates, and FLNF.

Although rhizosphere-focused studies are limited, work on FLNF in other regions,
particularly bulk soil and litter, suggest that quality (i.e., form) of C substrates may be
just as important as the quantity of C in regulating FLNF (1). Glucose has been used as
a C source for methods assessing N fixation in the rhizosphere and bulk soil (35), but
methods for isolating and culturing diazotrophs often use other forms of C, such as
malate, mannitol, and sucrose (36). Other C compounds, including acetate, have been
shown to inhibit nitrogenase activity; nitrogenase activity of Azotobacter paspali was
completely inhibited in pure cultures grown on acetate and reduced by 50% on root
surfaces exposed to acetate (37). Furthermore, there can be differential responses to C
sources depending on environmental conditions. When in association with grass roots,
N fixation by A. paspali increased with additions of citrate, but when in pure culture,
citrate additions reduced N fixation rates by half (37). These studies provide some
insight on the influence of specific C compounds on FLNF, but root exudates are a
complex mixture of low-molecular-weight compounds (29). Switchgrass exudates, for
example, were found to contain over 30 different compounds (L. K. Tiemann, A. W.
Bowsher, M. L. Friesen, S. E. Evans, and D. W. Hoyt, unpublished data) (Table 1),
suggesting that diazotrophs in the switchgrass rhizosphere have access to a diverse
range of C compounds. Carbon form, particularly the diverse C forms in the rhizo-
sphere, may be an important control on FLNF; however, it is very difficult to draw any
concrete conclusions about the influence of C form on FLNF because of a lack of
rhizosphere studies that explore this topic. This clear hole in our understanding of
rhizosphere FLNF highlights the need for studies assessing how C compounds found in
plant root exudates influence FLNF of individual diazotrophs as well as complex
microbial communities (e.g., rhizosphere communities).

The form of C available to FLNF can also drive the efficiency and productivity of N
fixation and determines the growth strategy of the organisms. Although little is known
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about the efficiency and productivity of rhizosphere FLNF specifically, we can make
inferences based on general FLNF research. Surprisingly, FLNF may be more productive
(i.e., greater N fixed per unit biomass) than symbiotic N fixation. Although symbiotic N
fixers can fix more N per gram of cellular material (1.0 to 2.5 versus 0.1 g N, g~ cellular
material for diazotrophs) (38), free-living diazotrophs live much shorter lives (on the
order of hours versus weeks for symbionts) and have 10 times higher nitrogenase
activity (25 to 50 mg N fixed g~ protein h—" versus 2 to 5 mg N fixed g~ protein h—’
for symbiotic N fixation) (38). If these rates are averaged over the lifetime of the
organism, rhizosphere diazotrophs may match or even exceed fixation by symbionts
(38). Thus, if plants are supporting a large and active diazotroph community, they may
be benefiting from highly productive N fixation, with N becoming available as the
diazotroph biomass rapidly turns over. Although these data highlight the potential
importance of FLNF as a plant N source, it is important to note that these FLNF rates
are based on growth under optimal conditions. As discussed in subsequent sections,
variations in other environmental conditions (e.g., oxygen availability and nutrient
availability) are likely to influence the productivity of FLNF.

Oxygen controls on free-living N fixation. Oxygen concentrations in the rhizo-
sphere are dynamic and extremely difficult to measure; therefore, most available
research on rhizosphere oxygen concentration has been conducted in saturated sys-
tems (e.g., wetlands or sediments). For example, studies we could find were conducted
using wetland plants grown in peat or sand (39, 40), agar (41), or using seagrass
(Cymodocea rotundata) grown in saturated sediments (42). In these studies, rhizosphere
oxygen concentration ranged from near 0% (anaerobic) to 20% (ambient). While these
studies indicate a wide range of oxygen concentrations that occur in the rhizosphere,
it is unclear if this variability in oxygen concentration is similar in nonsaturated
rhizospheres such as that of switchgrass. We also note that soil texture (including
particle size and compaction) is likely to impact rhizosphere oxygen concentrations; this
topic is discussed further in the “Other environmental controls on free-living nitrogen
fixation” section below.

Rhizosphere oxygen concentration also likely follows a diel pattern that could
partially control the activity of rhizosphere-associated microbes (42). Modeling efforts
suggest that diel changes in water flow through the rhizosphere (43) would have a big
impact on oxygen concentration. Active root and microbial growth in the rhizosphere
may also create oxygen depletion zones within the rhizosphere (44). Microsites of very
low or relatively high oxygen concentration may also form in the rhizosphere, as occurs
with roots of aquatic systems (45). We are unaware of any studies which have
specifically examined oxygen as a control on FLNF in the rhizosphere; however, we
know oxygen is a strong inhibitor of nitrogenase activity, and we can discuss physio-
logical responses of diazotrophs to oxygen using research derived predominately from
pure culture studies.

Oxygen irreversibly inhibits nitrogenase, even in aerobic organisms (46). Therefore,
diazotrophs must employ protection mechanisms to maintain N fixation when oxygen
is present. This includes avoidance of oxygen via growth strategy, spatial and/or
temporal isolation of nitrogenase from oxygen, and production of biofilms as oxygen
diffusion barriers (2, 19). Diazotrophs can also remove oxygen by increasing substrate
utilization, which increases respiration rates, thereby decreasing oxygen concentrations
(19, 38). This particular mechanism is likely at work in the switchgrass rhizosphere, as
switchgrass has been shown to stimulate microbial growth in the rhizosphere via
exudation and, thereby, substrate utilization (47). A rapidly growing rhizosphere com-
munity, regardless of diazotroph presence, is likely to reduce oxygen concentrations
around the root to FLNF-favorable levels.

Oxygen management requires energy investment and so can greatly influence the
efficiency of FLNF, or the amount of N fixed per unit C. Microaerophilic organisms are
the most efficient N fixers, fixing an estimated 26 mg N, g—' C metabolized (27 and
references therein). In contrast, anaerobes can fix 11 mg N, g=' C, while aerobes can
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only fix 7 mg N, g=' C (27 and references therein). One study found that upward of
60% of the energetic costs of N fixation are indirect costs associated with combating
oxygen (48). This may be especially true when organisms use increased respiration to
remove oxygen (49). Patra et al. found a negative relationship between substrate-
induced respiration and rates of FLNF in both rhizosphere and bulk soil, suggesting that
as diazotrophs increase respiration to combat oxygen damage, there is less C available
for FLNF (50). However, even under high oxygen pressure, if carbohydrate availability
is sufficiently high, diazotrophs may still carry out N fixation (49).

Under optimal oxygen concentrations, N fixation can actually be an energetically
favorable mechanism for NH5 acquisition, having a slight energetic advantage over
assimilatory nitrate reduction (48). However, because of the diversity of diazotrophs
present and potentially active in the rhizosphere, it is difficult to pinpoint one optimal
oxygen concentration for FLNF. For example, Inomura et al. found the oxygen optima
of Azotobacter vinelandii to be 3%, while GroBkopf and LaRoche demonstrated that
oxygen concentrations around 5% resulted in significantly higher nitrogenase activity
and lower respiration by Crocosphaera watsonii, a marine cyanobacteria, than ambient
oxygen concentrations (20%) (48, 49). It is likely that diazotrophs with different growth
strategies, oxygen protection mechanisms, and C demands will also have different
oxygen optima. Overall, work assessing the response of FLNF to different oxygen
concentrations is sparse, and there is no information available about how whole
communities of diazotrophs may respond to oxygen availability or if a community-level
oxygen optimum exists.

Free-living N fixation and N availability and form. As discussed by Reed et al.,
diazotrophs can access N via N fixation or through uptake of externally available N
sources (2), which can include both low- and high-molecular-weight organic N sources
(51). Given the energy costs of FLNF, it is generally downregulated by increasing N
availability, as diazotrophs use external N in favor of fixed N (2). This is corroborated by
several field studies which demonstrate that environments with low N availability,
whether soil, rhizosphere, or moss, typically have greater FLNF rates than sites with
high N availability (50, 52, 53). The switchgrass rhizosphere is likely to be one such
environment as root N uptake creates an N deplete zone in the rhizosphere (44) and
switchgrass is thought to be particularly skilled at scavenging N (54). In fact, we confirm
in our own work that unfertilized switchgrass rhizospheres exhibit greater FLNF rates
than fertilized rhizospheres (Fig. 4). However, as different N sources will require variable
amounts of energy for uptake and utilization, N form is likely to play an important role
in how N availability influences FLNF.

Ammonium, the direct product of N fixation, is well known to inhibit N fixation (2)
and has been shown to inhibit nitrogenase synthesis at the genetic level through the
regulation of nifA gene transcription (19). However, it does not inhibit the activity of
already synthesized nitrogenase in most organisms (38). In fact, there are only a few
diazotrophs that regulate nitrogenase posttranslationally, including Azospirillum
brasilense (19). This posttranslational regulation is carried out by dinitrogenase reduc-
tase ADP-ribosyltransferase (DraT) in response to ammonium and is reversed by
dinitrogenase reductase-activating glycohydrolase (DraG) (19). Organisms with DraG-
DraT regulation are likely to be more responsive to increases in ammonium, shutting
down nitrogenase activity as soon as ammonium becomes available, while organisms
without this posttranslational regulation may cease enzyme synthesis in response to
ammonium but will continue to have functioning nitrogenase in their cells. Character-
izing the presence of posttranslational regulation systems is important to understand-
ing diazotroph response to changes in N availability, particularly ammonium. Huergo
et al. suggest that DraT may be present in many diazotrophs (55), but to date, this
regulatory system has only been well studied in the photosynthetic bacteria Rhodospi-
rillum rubrum (56).

Glutamine also downregulates nitrogenase synthesis at the genetic level (nifA) via a
pathway similar to ammonium regulation (19). In fact, glutamine may influence am-
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monium regulation of N fixation as intracellular glutamine levels regulate glnD modi-
fication of the P, protein, an important cellular N sensor (55). Glutamine and glutamate
were found to downregulate N fixation of Herbaspirillum seropedicae (57). However, in
the same study, histidine, lysine, and arginine had no effect on nitrogenase activity. In
a similar study, ammonium, glutamine, and nitrate reduced N fixation in A. brasilense
(58). Conversely, nitrate concentrations of up to 800 wmol had no inhibitory effect on
growth or N fixation by C. watsonii (48).

Overall, the availability of external N sources generally reduces rates of FLNF.
Although, few studies have targeted rhizosphere diazotrophs to confirm these re-
sponses to N availability and the role of N form. Furthermore, the magnitude of this
response in the rhizosphere (i.e.,, complete shutoff FLNF or reduced rates of fixation)
which is likely to depend both on the concentration and the form of external N, is not
known.

Controls of phosphorus and micronutrients on free-living N fixation. The availabil-
ity of phosphorus (P) and micronutrients, including Fe, Mo, and V, is known to influence
N fixation (2). Yet, to the best of our knowledge, there are no studies on the controls
of P, Fe, Mo, and/or V specifically targeted to rhizosphere FLNF. There have been many
studies examining the importance of these nutrients on FLNF, mostly summarized by
Reed et al., but these have been almost exclusively conducted in bulk soil and leaf litter
(2). Here, we summarize more recent findings that may help us better understand the
nutrient constraints on rhizosphere FLNF.

Phosphorus is a key nutrient in energy production and has been frequently docu-
mented as a control on N fixation (59, 60). FLNF associated with the nonlegume tree
Eucalyptus urophylla was ~27% higher in soils receiving additions of P than in the
“no-added P” control (61). Furthermore, additions of N and P resulted in similarly
boosted FLNF rates (61), suggesting that P limitation was a stronger driver of FLNF than
N availability in this system. A meta-analysis examining FLNF responses to nutrient
additions found P fertilization to significantly increase FLNF but only in tropical forest
systems (62). We may expect a similar response in the rhizosphere where root uptake
of P can result in a P-depleted rhizosphere (44); thus, P may be a particularly important
limiter of rhizosphere FLNF.

The response of FLNF to P availability is highly variable and can be further compli-
cated when other nutrients, including Fe, Mo, and V, which are all essential components
of nitrogenase, are also limiting. For example, Wurzburger et al. found that the
limitation of FLNF by Mo and P varied along a P gradient of Panamanian soils (63). In
P-rich soils, Mo was most limiting, but this shifted to a colimitation of Mo and P in
P-poor soils (63). However, P alone never limited N fixation in this system (63).
Conversely, a study of Costa Rican soils found that P availability was the dominant
control on N fixation, while Mo concentrations did not correlate with soil FLNF rates
(60). These contrasting findings may be the result of differences in soil organic matter.
Wichard et al. describe how binding of Mo to organic matter can prevent Mo limitation
(64). This suggests that Mo may be more available in organic soils and, therefore, a less
important control on FLNF in organic-rich soils. Overall, the majority of studies indicate
that increased P, Fe, Mo, and V availability generally have positive effects on FLNF.
However, the most limiting nutrient and, therefore, the dominant control on FLNF is
variable. This could be particularly relevant in the rhizosphere where recent advances
in two-dimensional (2D) and three-dimensional (3D) element mapping have revealed
connections between root growth and exudation and micronutrient concentrations,
particularly metals, that can control microbial community composition and physiology
(65). For example, high concentrations of available iron found at root tips (66) could be
important for diazotrophs, as iron plays such a crucial role in nitrogenase construction
and functioning. This highlights the need to explore how availability of these nutrients,
specifically in the rhizosphere, may influence diazotroph community composition and
the potential for FLNF.
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Other environmental controls on free-living N fixation. The rhizosphere habitat
poses an extra set of challenges to FLNF not experienced by symbiotic N fixation, as
diazotrophs are more directly influenced by variation in the soil environment. For
example, soil texture may influence how diazotrophs manage oxygen because of the
relationship between texture and diffusion of substrate (i.e., C) and oxygen. Increasing
clay content of soils can create microaerophilic and anaerobic microsites where bacteria
can be protected from oxygen exposure (67), thus, potentially supporting larger
populations of N fixers and/or more efficient N fixers. Indeed, Gupta and Roper found
more rhizosphere N fixation in soils with greater clay content, which shifted to greater
N fixation along root surfaces as clay content decreased (67). While soil texture is known
to influence soil microbial community activity, there is little research exploring how soil
texture may influence FLNF in the rhizosphere.

Soil pH, which is also likely to be highly variable in the rhizosphere, may also be an
important environmental control on FLNF. The rhizosphere is a dynamic environment
in which root growth is continuously altering the pH of the surrounding soil (39);
therefore, pH may have a different effect on rhizosphere FLNF. For example, pH can
change 0.5 to 1 pH units when moving just 1 mm away from the root surface (68). We
also know that at the field scale, acidic soil pH has been shown to decrease N-fixation
rates in aerobic soils (1). Furthermore, a study of alpine meadow soils, with pH values
ranging from 5 to 8, found lower richness and diversity of diazotroph communities at
acidic pH (69) suggesting that lower N fixation in acidic soils may be due to reduced
community redundancy. Wang et al. also examined the relative abundances of the
three dominant genera in their soils (Azospirillum, Bradyrhizobium, and Mesorhizobium)
across the pH gradient (69). Azospirillum (a free-living N fixer) abundance did not vary
significantly with pH, but Bradyrhizobium (a free-living and symbiotic N fixer) abun-
dance increased with decreasing pH and Mesorhizobium (a symbiotic N fixer) abun-
dance was reduced at acidic pH (69). This work provides some insight into response of
rhizosphere FLNF to soil pH and suggests it may depend heavily on the dominant
diazotroph in the community. But, with the lack of in situ rhizosphere studies, it is
difficult to draw any strong conclusions about the magnitude or direction of rhizo-
sphere FLNF response to changes in soil pH.

FLNF is also known to be temperature and moisture sensitive, increasing as both
temperature and soil moisture increase, and these responses are well summarized by
Reed et al. (2). However, rhizosphere-focused studies are lacking, highlighting a need
for both mechanistic and field-scale studies aimed at addressing this knowledge gap.
Soil moisture may be of particular interest, as the roots are likely to exhibit strong
control over rhizosphere water availability, creating water accumulation and depletion
zones according to uptake and consumption (44), which could dramatically alter
oxygen dynamics.

Methodological considerations for studying free-living N fixation. The assess-
ment of FLNF rates and diazotroph diversity across environmental gradients and
ecosystems is crucial to furthering our understanding of FLNF. However, there are
methodological issues that should be considered in the assessment of both rates and
diversity. FLNF rates are most commonly measured either via acetylene reduction or
5N isotope enrichment. Acetylene reduction takes advantage of the ability of nitro-
genase to reduce triple bonded molecules other than N,. In this method, diazotrophs
are supplied acetylene (C,H,) which is reduced to ethylene (C,H,) via nitrogenase (70).
Concentrations of ethylene can then be measured over time to obtain a proxy for FLNF
rates. Unfortunately, there are multiple issues that should be accounted for when using
this method. First, this is an indirect measure of FLNF and, as such, requires a conversion
constant that relates acetylene reduction rates to N, reduction rates. While a conversion
factor of 3 is commonly used to transform acetylene reduction rates to FLNF rates (70),
the actual conversion value can vary from 30 to 1 (20). As discussed above (see “The
diversity of free-living nitrogen fixers”), the different forms of nitrogenase have different
affinities for acetylene which can result in highly variable ratios between acetylene
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reduction rates and FLNF rates. Moreover, this method relies on the measurement of
ethylene production over time. It is assumed that this ethylene production is the direct
result of acetylene reduction; however, ethylene has been shown to evolve from soils
independent of acetylene (71). Ethylene is an important compound in plant growth and
signaling and is produced by both plants and bacteria (72). This production is not
associated with the presence of acetylene. Controls that account for background
ethylene production can be included with the analysis; however, they have been shown
to result in misrepresentative final rates of acetylene reduction (71). Therefore, we
recommend that acetylene reduction not be used for the assessment of rhizosphere
FLNF rates.

The >N isotope incorporation method represents a good alternative to acetylene
reduction. This method supplies diazotrophs with >N, in place of atmospheric N,,
which is dominated by '*N (35). As diazotrophs fix N, the >N label is incorporated into
the soil and can be measured to determine FLNF rates (35). A reference sample which
provides >N content in a given sample prior to >N, fixation is required to obtain FLNF
rates. >N isotope enrichment is a direct measure of FLNF rates and is, therefore, more
accurate than acetylene reduction. However, this method is costlier in time and funds
than acetylene reduction. The contribution of N via N fixation has also been frequently
assessed isotopically by assuming all fixed N found in soils will have a value of 0%o (73,
74). In other words, it is assumed that there is no fractionation during N fixation.
Although symbiotic N fixation does not result in any fractionation, this is not true of
FLNF which has an average fractionation factor of -2.5%o0 (21). However, the true
fractionation factor of a sample will depend on the relative abundance of different
nitrogenase forms and may actually range from —1%o if Mo-nitrogenase dominated to
—4%o if V-nitrogenase dominated (21). When trying to assess the relative contribution
of N fixation to soil N pools, this fractionation must be accounted for in order to
accurately assess the contribution of FLNF as well as symbiotic N fixation.

The assessment of diazotroph diversity also comes with challenges and we direct
you to Gaby and Buckley for a detailed description of some of these challenges (75). In
brief, Gaby and Buckley discuss two major concerns surrounding diazotroph diversity
assessment (75). First, PCR primer selection for the nifH gene can lead to bias in
measures of both diversity and relative abundance of amplified organisms (75). If using
universal PCR primers, it is important to select primer pairs with high coverage but
low phylogenetic bias (76). Second, paralogs of nifH can lead to a false-positive
detection of the nifH gene (75). Lastly, as discussed earlier, there are several forms
of nitrogenase. These isozymes are regulated by different genes, namely, nifH, anfH,
and vnfH for Mo-nitrogenase, Fe-nitrogenase, and V-nitrogenase, respectively (77).
Thus, it may also be prudent to assess the diversity of the anfH and vnfH genes
alongside nifH.

Conclusions. FLNF likely occurs predominately in the rhizosphere where C from
root exudates can support the energy demands of N fixation. Throughout this review,
we have tried to put FLNF in the context of cropping systems, using switchgrass as an
example of where the reduction or elimination of fertilizer inputs due to FLNF could
significantly improve system sustainability (78). However, there is still much we do not
know. We know that switchgrass allocates >40% of its fixed C belowground and over
90% of exudate C released directly to the soil is incorporated into microbial biomass
and that switchgrass exudates are also very diverse (L. K. Tiemann, A. W. Bowsher, M. L.
Friesen, S. E. Evans, and D. W. Hoyt, unpublished data) (Table 1). However, very little is
understood about how different exudate compounds may promote or inhibit FLNF. It
is also not clear whether C quality or quantity plays a larger role in FLNF. In the
switchgrass rhizosphere, ample C supply and stimulated microbial growth likely result
in reduced oxygen concentrations favorable to FLNF, but at the same time, this often
results in reduced efficiency of FLNF (i.e., more C use for less N fixed), suggesting that
C and oxygen availability may interact to control FLNF.
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Nitrogen and phosphorus availability are likely strong controls on rhizosphere FLNF.
For example, we can predict that uptake of N and P by switchgrass roots likely creates
a nutrient-depleted rhizosphere, and yet we do not know how diazotrophs respond to
these conditions. Lastly, it is important to consider the medium in which FLNF is
occurring, namely, the soil. Little is known about how soil texture, pH, temperature, and
moisture availability influence rhizosphere FLNF rates. Available research suggests clay
soils with neutral pH and moderate temperatures and moisture availability are likely to
be most favorable. However, roots exert strong control over rhizosphere conditions,
including altering soil pH and moisture availability, and may ultimately prove more
influential than soil properties alone. For example, different varieties of switchgrass
exhibit different root architecture that has been shown to drive changes in microbial
community structure and function (79).
Overall, the controls on FLNF in the rhizosphere are poorly understood. The rhizo-
sphere is a dynamic environment, heterogenous both in resource and oxygen avail-
ability which makes it difficult to not only relate FLNF to symbiotic N fixation but also
to predict both the direction and magnitude of FLNF response to the discussed
controls. More research is needed at the mechanistic, ecosystem, and global level in
order to better understand the role of rhizosphere FLNF in terrestrial systems and its
controls.
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