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Virtually all ecosystem processes are influenced by microor-
ganisms, and many processes are carried out exclusively by 
microorganisms. This has sometimes led to the assumption 

that a better description of the microbiome (including its associated 
transcripts, proteins and metabolic products) should lead to a better 
understanding and predictions of system-level processes. However, 
such justifications assume that measurable characteristics of the 
microbiome (for example, 16S rRNA gene libraries, metagenomes, 
enzymatic activities) can inform our ability to better understand 
and predict these processes. Unfortunately, additional information 
about the microbiome does not always provide a clearer under-
standing of ecosystem processes beyond what can be predicted by 
environmental factors alone1,2.

Two recent meta-analyses3,4 suggest that research at the inter-
section of ecosystem science and microbial ecology often relies on 
assumed relationships between microbiome characteristics and 
ecosystem processes, and often does not test to see if those relation-
ships are present. The first, an examination of 415 studies, found 
little evidence that protein-encoding genes (sometimes referred to 
as functional genes) or gene transcripts correlate with associated 
biogeochemical processes3. Although all studies attempted (or pre-
sumed) to link microbial genes or transcripts with function, only 
14% measured both the abundance of genes or transcripts and the 

corresponding process. When both genes and corresponding pro-
cesses were measured and the relationship between the two were 
tested, only 38% exhibited a positive correlation3. This result was 
consistent whether functional gene or transcript abundance was 
used as the response variable.

The second study compiled a separate dataset of 148 studies 
that examined microbial membership and ecosystem processes in 
response to experimental manipulations4. Whereas 40% of included 
studies reported concomitant changes in microbial membership 
and an ecosystem process, only one-third of those cases reported 
testing for a significant relationship between microbial membership 
and an ecosystem process. Many of the studies (64%) did not explic-
itly state a hypothesis about links between microbial membership 
and ecosystem processes. Of the 53 studies that did pose a hypoth-
esis, more than half (53%) did not report testing for a statistical link 
of the proposed hypothesis4.

Microbiomes are the engines that power system-level processes5. 
However, the meta-analyses described illustrate that the current 
approach to study the links between microbiome characteristics 
and ecosystem processes are not well formulated, and that these 
relationships are implied yet rarely tested. When linkages are tested, 
significant correlations between microbiome characteristics and eco-
system processes are sometimes present, but more frequently not3,4.  
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Translating the ever-increasing wealth of information on microbiomes (environment, host or built environment) to advance our 
understanding of system-level processes is proving to be an exceptional research challenge. One reason for this challenge is 
that relationships between characteristics of microbiomes and the system-level processes that they influence are often evalu-
ated in the absence of a robust conceptual framework and reported without elucidating the underlying causal mechanisms. The 
reliance on correlative approaches limits the potential to expand the inference of a single relationship to additional systems 
and advance the field. We propose that research focused on how microbiomes influence the systems they inhabit should work 
within a common framework and target known microbial processes that contribute to the system-level processes of interest. 
Here, we identify three distinct categories of microbiome characteristics (microbial processes, microbial community properties 
and microbial membership) and propose a framework to empirically link each of these categories to each other and the broader 
system-level processes that they affect. We posit that it is particularly important to distinguish microbial community proper-
ties that can be predicted using constituent taxa (community-aggregated traits) from those properties that cannot currently be 
predicted using constituent taxa (emergent properties). Existing methods in microbial ecology can be applied to more explicitly 
elucidate properties within each of these three categories of microbial characteristics and connect them with each other. We 
view this proposed framework, gleaned from a breadth of research on environmental microbiomes and ecosystem processes, 
as a promising pathway with the potential to advance discovery and understanding across a broad range of microbiome science.
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One reason for the ambiguity between these two factors is that many 
studies are conducted in the absence of a conceptual framework that 
illustrates how different measurable microbial characteristics relate 
to one another and to the system-level process of interest.

Linking microbial characteristics and ecosystem processes
Current conceptual research frameworks that attempt to link 
microbial information to a system-level process often do not effec-
tively align with the methods being applied or the data that those 
methods generate. For example, environmental factors act on the 
physiology of individual organisms, which alters their competitive 
ability, abundance and ultimately their contribution to an ecosystem 
process. However, designing an observational study or experiment 
from this framework assumes that environmental and microbial 
characteristics are measurable across multiple categories of ecologi-
cal organization (that is, individuals, populations and communities) 
at the temporal and spatial scales at which they influence system-
level processes (Fig. 1a). In addition, the relationships between envi-
ronmental variables and microbial characteristics can be decoupled 
in both time and space4, and are often non-linear6. Recent immi-
gration, phenotypic plasticity, disequilibrium between the environ-
ment and the extant microbiome at the time of sampling, functional 
redundancy and dormancy can all mask the relationship between 
measurable microbial characteristics and the processes that micro-
organisms influence (Fig. 1b)4,7–9. As micrometre-scale characteris-
tics of microbiomes (10–6 m) are scaled to ecosystem level (metres 
to kilometres), we assume that our conceptual understanding is also 
scalable. However, each of the aforementioned confounding factors 
aggregate over multiple orders of magnitude, often masking the 
very relationships we seek to elucidate (Fig. 1b). To formalize how 
measurable microbiome characteristics are linked with system-level 
processes, we have conceptually defined the intersection of micro-
bial and ecosystem ecology and identified three categories of micro-
bial characteristics to illustrate how they interact with each other 
and how they may contribute to an ecosystem process (Fig. 2).

Mapping ecosystem processes to microbial characteristics
Defining the ecosystem process, its critical sub-processes and the 
known phylogenetic distribution of the metabolic pathways that 
drive those sub-processes creates an explicit conceptual pathway 
that links the ecosystem process to the microorganisms that con-
tribute to it. Ecosystem processes are defined as qualitative changes 
in a pool, or a flux from one pool to another (for example, NH4

+ 

to NO3
–, or dissolved organic matter to CO2). The first step to 

understand how a microbiome influences an ecosystem process is 
to define the ecosystem process of interest and each sub-process 
that contributes to it (that is, the set of constituent reactions that 
combine to determine a net flux). Ecosystem processes are compos-
ites of complementary or antagonistic sub-processes, carried out 
by phylogenetically and metabolically diverse microorganisms10. 
For example, net ecosystem productivity is the balance between 
antagonistic processes of carbon fixation and carbon mineraliza-
tion. Each sub-process of net ecosystem productivity can be further 
partitioned into a series of metabolic pathways (for example, che-
moautotrophic nitrification and photoautotrophic carbon fixation, 
or heterotrophic fermentation and aerobic respiration). Partitioning 
each ecosystem process in this hierarchical manner can continue 
until the sub-processes map directly to specific microbial metabolic 
pathways (for example, acetoclastic methanogenesis). Subsequently, 
each of these metabolic pathways can be categorized as either phylo-
genetically broad or narrow11. Broad processes are phylogenetically 
common (that is, widely distributed among taxa), whereas narrow 
processes are phylogenetically conserved (limited to a specific sub-
set of taxa). For example, denitrification and photosynthesis are 
phylogenetically broad processes, while both methanogenesis and 
methanotrophy are currently thought to be phylogenetically narrow 
processes (with at least one notable exception12).

The second step is to identify the controls or constraints on 
each constituent sub-process. For example, the kinetics of a single 
metabolic pathway in a model organism may help us understand 
the rate-limiting steps of a narrow process, but insights from model 
organisms are much less likely to capture the full spectrum of 
responses of a broad process where phenotypic variation among 
phylogenetically diverse organisms is likely to be much greater13,14. 
Once the ecosystem process has been conceptually partitioned 
into its component parts and their primary controls, a concerted 
approach can be applied to investigate how characteristics of the 
microbiome influence the ecosystem process of interest within the 
complexity of a natural environment.

Categories of microbial characteristics
The contribution of the microbiome to ecosystem processes is 
exerted through aggregate community properties that are shaped by 
both microbial membership and environmental factors. Most cur-
rent studies rarely articulate how measurements of microbial char-
acteristics differ in their specificity (that is, the level of phylogenetic 

a b

Functional
redundancy 

Phenotypic plasticity
Dormancy

Competition
Resource limitation 

Natural selection
Disequilibrium 

Scale of
measurement

(m–km)  

10–6 m

Ecosystem
process 

Community
composition 

Populations

Individuals

EnvironmentEnvironment

Ecosystem
process 

Community
composition 

Populations

Individuals

Fig. 1 | Diagram of microbial–ecosystem linkages. a, A schematic to show how linkages are commonly conceptualized across levels of ecological 
organization. b, The series of ecological phenomena that create challenges when attempting to link metrics from one level of ecological organization  
to another.
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resolution), precision (the ability of the method to repeatedly 
describe the characteristic of interest) or context (how a character-
istic relates to other microbial characteristics or the ecosystem). To 
aid in the design of experiments that link microorganisms to the 
processes that they influence, we propose three distinct categories 
of microbial characteristics: (1) microbial processes; (2) microbial 
community properties; and (3) microbial membership (Fig. 2). This 
proposed framework allows the researcher to clearly identify how 
different measurements used to characterize a microbiome inter-
act with each other, and to identify the potential of each charac-
teristic to elucidate the microbial contribution to the system-level 
process. All measurable characteristics of microbial communities 
(for example, abundance of cells; sequence of genes, transcripts or 
proteins; enzyme expression or activity) can be placed within one of 
the above categories. This conceptual structure that orientates each 
microbial category within a broader context creates the opportunity 
to improve the design of observational and experimental studies in 
microbiome research.

Microbial processes. Microbial processes are the collective metab-
olisms of the microbiome that contribute to changes in pools and 
fluxes of elements or compounds (that is, Fig. 2, pathway K). This is 
the category of microbial information that can most readily be incor-
porated into system-level models because many microbial processes 
represent the key sub-processes that contribute to a particular eco-
system process (for example, methanogenesis +​ methanotrophy ≈​  
methane efflux). Commonly measured microbial processes in 
ecosystem science include nitrogen fixation, denitrification, nitri-
fication, phosphorus uptake and immobilization, carbon fixation 
and organic carbon mineralization. The rates of many microbial 
processes can be approximated through physiological assays (for 
example, biological oxygen demand to estimate microbial respira-
tion), and while they do not open the ‘black box’ of the microbial 
community, they do directly quantify the microbial contribution (or 
potential contribution) to changes in resources moving through the 
box. Microbial processes can be distinguished from other microbial 
characteristics because they are all rates (that is, they have time in 
the denominator) and require a bioassay to estimate.

Assays used to estimate microbial processes are often logistically 
challenging, require manipulations that inevitably deviate from in 
situ conditions, and often depend on the environment from which 

the microbiome was sampled. For example, the relationship between 
temperature and microbial processes, such as enzyme activity and 
phosphorus-use efficiency, vary across latitudinal gradients15 and 
among seasons16, respectively. Thus, observations of the effect of 
temperature on either enzyme activity or phosphorus-use efficiency 
depend on where (for example, at what latitude) and when (for 
example, during which season) they were measured. In the absence 
of an understanding of the underlying physiological mechanism (for 
example, the physiological change that allows a community to per-
form differently at different temperatures), the relationship between 
an environmental driver (such as temperature) and a microbial pro-
cess must be measured through a direct assay at each location and 
at each time. This limits the inference possible from relying on mea-
surements of microbial processes alone to understand the microbial 
contribution to an ecosystem process.

Microbial community properties. Microbial community proper-
ties include a broad set of microbial characteristics, such as com-
munity biomass or biomass elemental ratios (for example, biomass 
C:N or C:P ratios), and the majority of phylogenetically undifferen-
tiated aggregate sequence-based measurements (for example, gene 
abundance, metagenomes, transcriptomes). Microbial community 
properties (Fig. 2) represent an integrated characteristic of the 
microbiome that has the potential to predict or at least constrain the 
estimates of microbial processes. For example, microbial commu-
nity biomass C:N (a community property) has been shown to indi-
cate a microbiome’s potential to mineralize or immobilize nitrogen 
in terrestrial17, freshwater18 and marine19 ecosystems.

Microbial community properties can be separated into two cat-
egories: emergent properties and community-aggregated traits. It is 
generally agreed that emergent properties refer to a quality of the 
whole that is unique and distinguishable from the additive proper-
ties of its constituents. Whereas in some cases, emergent proper-
ties may be predicted from their constituent parts — for example, 
prediction of the physical properties of carbon polymers is possible 
based on the atomic organization of carbon atoms within each struc-
ture20 — in microbial ecology our understanding of the constituent 
parts and their interactions are more often than not insufficient to 
predict emergent properties. Here, we use ‘emergent properties’ as 
it has been defined previously in ecology21: “An emergent property 
of an ecological unit is one which is wholly unpredictable from 
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Fig. 2 | A conceptual map of the intersection between microbial (vertical) and ecosystem (horizontal) ecology. The map illustrates each of the three 
categories of microbial characteristics (microbial processes, community properties and microbial membership) as defined in the text. We argue for 
an increased focus on studies that elucidate pathways E, F, G and K. In addition, we note that pathways I and J are less likely to effectively incorporate 
microbiome characteristics into system-level science. In each category, ∆​ indicates an emphasis on how changes within a category may lead to a change 
in a connected category. The dotted arrow for letter F denotes that many emergent properties cannot currently be linked to membership, and this is an 
important area for active research. CAT, community-aggregated trait; EP, emergent property.

Nature Microbiology | VOL 3 | SEPTEMBER 2018 | 977–982 | www.nature.com/naturemicrobiology 979



Review Article NaTurE MicrObiOlOgy

observation of the components of that unit”, which is also consistent 
with its contemporary use in microbial ecology22.

Emergent properties of microbiomes influence important eco-
system processes. For example, a series of experiments in flow-
through flumes mimicked development and metabolism of stream 
biofilms23. Transient storage (that is, an increase in residence time 
of the water and its solutes near the biofilm relative to the flow 
around it) increased as the microbial biofilm density increased23. 
In this case, biofilm density was an emergent property of the 
microbiome and transient storage was the microbial process that it 
mediated. Another example of an emergent property is the distri-
bution of traits that influence key microbial processes. Trait-based 
approaches have a rich history in ecology and have been increas-
ingly applied to address questions in multiple areas of microbial 
ecology24. For example, uptake of an organic substrate can often 
involve the expression of multiple genes — differing among indi-
vidual organisms — all capable of performing uptake of the organic 
substrate, albeit with differences in the underlying efficiency. The 
distribution of the expression of these functional gene variants 
generates a trait distribution that is an emergent property of the 
microbiome. This emergent trait distribution determines the overall 
performance of the microbiome for that function (that is, the uptake 
of the organic substrate), but it cannot be predicted from the pres-
ence of the organisms conferring that trait using current methods25. 
While characterization of emergent properties may improve the 
understanding of microbial processes (Fig. 2, pathway G), currently 
they most often cannot be estimated or predicted on the basis of the 
constituent taxa (that is, membership) alone (Fig. 2, pathway F), and 
thus must remain an intermediary between environmental drivers 
(Fig. 2, pathway C) and microbial processes (Fig. 2, pathway G).

Unlike emergent properties, community-aggregated traits can 
potentially be estimated from characteristics of their constituents 
and provide a pathway to link microbial community member-
ship to the community properties that drive microbial processes  
(Fig. 2, pathway E)26. For example, community-aggregated traits 
may include commonly measured community properties such as 
functional gene abundance as estimated from quantitative PCR (for 
example, pmoA, which encodes a subunit of the enzyme involved in 
methane oxidation, can be used to estimate potential for methanot-
rophy and as a phylogenetic marker for methanotrophs)27. A recent 
perspective article that discussed the role of community-aggregated 
traits in microbial ecology noted a series of additional putative com-
munity-aggregated traits (for example, maximum growth rate, dor-
mancy, osmoregulation) that could be inferred from metagenomic 
data of the extant community26.

Understanding which community properties can be predicted by 
membership is a critical research question and an important step 
in understanding how the microbiome contributes to system-level 
processes. Whether a community property is likely to be an emer-
gent property or a community-aggregated trait is an exciting area of 
research and provides an important framework to advance research 
at the microbial–ecosystem nexus. New approaches, such as study-
ing higher-level interactions in ecological communities, could help 
us understand how a microbiome’s constituents interact to form 
emergent properties28. This is not a trivial task, yet a suite of existing 
methods, discussed in section ‘Applying and testing the proposed 
framework’, provide the ability to directly pursue this challenge.

Microbial community membership. Although the now common-
place analysis of community membership by sequencing phylo-
genetic markers (for example, internal transcribed spacer regions 
or regions of the 16S rRNA and 18S rRNA genes) or suites of 
phylogenetically conserved protein sequences can identify constitu-
ent microbial taxa, the direct coupling of microbial phylogeny to 
physiology and ecology remains elusive (Fig. 2, pathway H)29–31. In 
general, the paucity of associated physiological data or information 

on population phenotypes that accompany phylogenetic analyses 
limits the system-level inference that is possible from analyses of 
community membership. Even when the physiology of an organ-
ism is known, it appears that many metabolic pathways are phy-
logenetically broad, and that any given microbiome will contain a 
diverse set of microorganisms with the genes that encode many of 
the same common microbial metabolic pathways, often referred to 
as functional redundancy32. There also appears to be no consistent 
phylogenetic resolution at which specific microbial metabolic path-
ways are constrained32. This limits our ability to attribute microbial 
processes to community membership of even relatively simple envi-
ronmental consortia. Whilst it is clear that microbial populations 
are not randomly distributed in space and time31, and that some 
microbial traits are conserved at coarse taxonomic scales24,33,34, 
the physiological mechanisms underlying non-random distribu-
tions of microbial taxa across environmental gradients are often 
unknown. This limited understanding of the metabolism of most 
bacterial phyla is one factor that currently prevents our ability to 
link a microorganism’s abundance in an environment to its role in a 
related microbial process.

A path forward
We suggest that a challenging but necessary step for microbiome 
science is to move away from identifying correlative relationships 
between characteristics of the microbiome and system-level pro-
cesses, and towards identifying more causative and mechanistic 
relationships. The conceptual diagram (Fig. 2) is a road map to 
organize and link the diverse suite of measurable microbial charac-
teristics that are currently available to researchers. Figure 2 does not 
represent how these components necessarily interact in the envi-
ronment; rather, it is a map that identifies potential links between 
measurable microbial and system-level characteristics that can 
help structure our exploration of how microorganisms influence 
the systems they inhabit. Ecosystem ecology has traditionally been 
confined to interactions between environmental parameters and 
ecosystem processes (depicted within the horizontal arrow, Fig. 2).  
Similarly, microbial ecology (depicted within the vertical arrow,  
Fig. 2) has historically focused on phylogenetically undefined 
aspects of microbial communities (for example, bacterial abun-
dance) and microbial processes (for example, bacterial production), 
the physiology of microbial isolates (for example, sulfate-reduc-
ing bacteria) or the collective physiology of highly reduced com-
munities with known membership (for example, the wastewater 
treatment microbiome). The routine inclusion of sequence-based 
approaches in studies of environmental microorganisms has led to 
an increasingly detailed description of the world’s microbiomes and 
an increasing interest in how constituents of those microbiomes 
interact to influence the system as a whole.

Currently, researchers use a range of approaches for attempting 
to link characteristics of the microbiome to ecosystem processes. 
Direct connections between microbial membership and ecosystem 
processes (Fig. 2, pathway I), or community properties and ecosys-
tem processes (Fig. 2, pathway J), have proven difficult to establish3,4. 
We propose: (1) identifying which microbial processes are likely 
to contribute to ecosystem-level pools and fluxes a priori (Fig. 2,  
pathway K); (2) determining which microbial community prop-
erties best describe and predict these microbial processes (Fig. 2,  
pathway G); and (3) identifying whether the community proper-
ties that best describe each process are a community-aggregated 
trait or an emergent property (community properties, Fig. 2).  
If the community property is likely to be a community-aggregated 
trait, exploring the link between microbial membership and com-
munity properties may lead to further understanding and perhaps 
an enhanced predictive power (Fig. 2, pathway E). However, if the 
community property is likely to be an emergent property, elucidat-
ing the microbial membership that contributes to the emergent 
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property is, given the current understanding, unlikely to improve 
understanding of the drivers of that community property (Fig. 2, 
pathway F). Formalizing microbiome research into a structured, 
conceptual framework should help the research community better 
focus on potential links between microbiome characteristics and 
system-level processes that are most likely to be detected empiri-
cally. This approach will also allow researchers working in differ-
ent systems to test the same pathways among defined microbiome 
characteristics and thus increase the possibility of understanding 
the causal mechanism (or absence of causality) for observed cor-
relations. Thus, future research endeavours will be most powerful if 
they focus on elucidating connections through the complete path of 
microbial ecology (Fig. 2, pathways E, F and G, blue arrow), rather 
than direct connections between microbial membership or commu-
nity properties and ecosystem processes (Fig. 2, pathways I and J).

Applying and testing the proposed framework
Applying and testing the proposed framework will depend on the abil-
ity to more robustly characterize each category of microbial character-
istics and to directly measure the arrows that connect each category 
(Fig. 2). Both labelling/sorting approaches and phenotypic description 
of isolates provide an opportunity to better understand how micro-
bial membership contributes to community properties (Fig. 2, path-
ways E and F). Labelling and cell-sorting approaches (for example, 
fluorescence in situ hybridization (FISH) coupled with flow cytometry 
cell sorting35 or immunocapture, such as with bromodeoxyuridine 
(BrdU))36 provide powerful tools to constrain the complexity of the 
microbiome and directly test hypotheses that link membership to 
community properties or microbial processes. For example, a study 
of an Arctic Ocean bacterial community labelled the actively growing 
component of the community using BrdU and then separated those 
populations from the rest of the community, using an immunocapture 
technique to better understand the portion of the microbiome that 
was contributing to secondary production36. In addition, physiologi-
cal studies of isolates that are representative of important community 
properties have the potential to advance our understanding of the role 
of phenotypic plasticity in structuring how constituent populations do 
or do not contribute to community properties (Fig. 2, pathway E or 
F)13. Detailed studies of isolates of common environmental operational 
taxonomic units (OTUs) have demonstrated immense variation within 
a given OTU (that is, microdiversity) that in part explains the challenge 
of linking membership to a community property14. For example, work 
on Prochlorococcus has led to a better understanding of how ecotypes 
within a single OTU can lead to specialization in temperature, and 
substrate affinity37. OTUs that form a substantial portion of the micro-
biome’s sequence abundance provide potential candidates for further 
investigation of possible phenotypic plasticity and/or microdiversity14. 
For example, a single phylotype of the class Spartobacteria within the 
phylum Verrucomicrobia was found to be present in a broad range of 
soil ecosystems and comprised as much as 31% of all 16S rRNA gene 
sequences returned from prairie soils38, making it an excellent candi-
date for targeted isolation and physiological studies. Studies of envi-
ronmental isolates are essential for building a broader understanding 
of how community membership does or does not contribute to com-
munity properties (Fig. 2, pathways E and F).

In addition to a better description of each category of microbial 
characteristics, an important step in moving from a correlative and 
descriptive approach to a causative and mechanistic approach comes 
in measuring the arrows represented by letters in Fig. 2. There is a suite 
of powerful methods already being employed in microbial ecology that 
can actively measure many of the arrows illustrated in Fig. 2, including 
stable isotope probing (SIP) of mixed communities39, single-cell meth-
ods that can assay cells in the physiological state that they occur in in 
the environment, and labelling individual cells with stable isotopes for 
single-cell analyses40. Studies that use SIP or any form of tracking of 
isotopically labelled substrates into a population have been successful 

in linking microbial membership to microbial processes (Fig. 2, path-
way H). For example, a study of a Scottish peatland used SIP to reveal 
that a single species of Desulfosporosinus was most probably responsible 
for the totality of sulfate reduction within the peatland even though it 
only comprised 0.006% of the retrieved 16S rRNA gene sequences41. 
In addition to this example of using SIP to link microbial membership 
and microbial processes (Fig. 2, pathway H), there is a suite of culti-
vation-independent techniques (such as Raman microspectroscopy, 
NanoSIMS or energy-dispersive spectroscopy (EDS)) that complement 
sequence-based microbiome analyses by reporting on the physiologi-
cal and phenotypic characteristics of individual cells in situ40,42,43. Both 
Raman microspectroscopy and NanoSims can be coupled with a range 
of in situ hybridization techniques (for example, FISH) to identify 
which populations are contributing to community properties (Fig. 2, 
pathway E) or microbial processes (Fig. 2, pathway H). For example, 
a study of a microbial consortia from the Sippewissett Salt Marsh on 
the coast of Massachusetts, USA, used a combination of FISH and 
NanoSIMs to confirm a syntrophic association between a population 
of autotrophic purple sulfur bacteria and heterotrophic sulfate-reduc-
ing bacteria44. These existing methods for confirmatory ecophysiology 
provided direct measurements of the arrows connecting membership 
with microbial processes (in this case, both carbon fixation and sulfate 
reduction; Fig. 2, pathway H) in a stable microbial consortium.

These cultivation-independent approaches also create the poten-
tial to begin to determine which community properties are emer-
gent properties, and which are community-aggregated traits. For 
example, microbial community biomass stoichiometry (such as 
biomass C:N or C:P ratios) cannot currently be predicted (or even 
constrained) from a list of its constituent taxa (Fig. 2, pathway F). 
However, microbial biomass stoichiometry is a community prop-
erty with power to predict the microbial contribution to nutrient 
cycling (Fig. 2, pathway G)17–19. EDS has the power to measure the 
C:N:P of individual bacterial cells growing in situ (that is, not in 
culture)43. The potential to couple EDS analysis with a phylogenetic 
label presents the opportunity to assay mixed microbial communi-
ties and assess the link between phylogenetic identity and biomass 
stoichiometry under natural conditions45. This approach would 
provide a direct link between community membership and a com-
munity property (for example, biomass C:N; Fig. 2, pathway E) that 
influences an important microbial process (that is, nutrient recy-
cling). These approaches applied in concert with sequence-based 
analyses have the potential to empirically link the categories of 
microbial information defined here (Fig. 2) with the processes they 
influence, moving microbiome science from a descriptive and cor-
relative approach to a mechanistic and causative approach.

Designing microbiome research
The framework presented here provides one approach to formal-
ize inquiry across microbiome science and encourages empirical 
linkages between the presence of organisms in a system and the 
processes that characterize that system. Whereas we draw examples 
from environmental microbiomes and the ecosystems they inhabit, 
this structured approach has the potential to benefit the analysis 
of microbiomes associated with other systems, such as host organ-
isms and those of the built environment. It is not only important 
to establish causal links among microbial membership, community 
properties, microbial processes and ecosystem processes, but also 
to determine when these links are unlikely to be present due to 
the confounding factors discussed above (Fig. 1) or for other rea-
sons. Research that indiscriminately seeks to identify correlations, 
which places all microbial characteristics on an equal plane and 
does not explicitly recognize the relationships between microbial 
characteristics, is likely to continue to yield conflicting and ambigu-
ous results that not only fail to provide new insight into ecosystem 
processes, but also blur the connections that do exist. We suggest that 
rather than looking for linkages among microbiome membership 
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and system-level processes in every study, research efforts would ben-
efit from strategically targeting the linkages and processes for which 
an a priori understanding of microbial physiology should allow us to 
improve our understanding of the ecosystem process.
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